Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Can segmental model reductions quantify whole-body balance accurately during dynamic activities?

Gait & Posture 2017 July
When investigating whole-body balance in dynamic tasks, adequately tracking the whole-body centre of mass (CoM) or derivatives such as the extrapolated centre of mass (XCoM) can be crucial but add considerable measurement efforts. The aim of this study was to investigate whether reduced kinematic models can still provide adequate CoM and XCoM representations during dynamic sporting tasks. Seventeen healthy recreationally active subjects (14 males and 3 females; age, 24.9±3.2years; height, 177.3±6.9cm; body mass 72.6±7.0kg) participated in this study. Participants completed three dynamic movements, jumping, kicking, and overarm throwing. Marker-based kinematic data were collected with 10 optoelectronic cameras at 250Hz (Oqus Qualisys, Gothenburg, Sweden). The differences between (X)CoM from a full-body model (gold standard) and (X)CoM representations based on six selected model reductions were evaluated using a Bland-Altman approach. A threshold difference was set at ±2cm to help the reader interpret which model can still provide an acceptable (X)CoM representation. Antero-posterior and medio-lateral displacement profiles of the CoM representation based on lower limbs, trunk and upper limbs showed strong agreement, slightly reduced for lower limbs and trunk only. Representations based on lower limbs only showed less strong agreement, particularly for XCoM in kicking. Overall, our results provide justification of the use of certain model reductions for specific needs, saving measurement effort whilst limiting the error of tracking (X)CoM trajectories in the context of whole-body balance investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app