Add like
Add dislike
Add to saved papers

Remediation of PAH polluted soils using a soil microbial fuel cell: Influence of electrode interval and role of microbial community.

The soil microbial fuel cells (SMFCs) were constructed to remediate soils contaminated by polycyclic aromatic hydrocarbons (PAHs). With a maximum power density of 12.1mWm-2 and an internal resistance of 470Ω, a closed SMFC showed electricity generation comparable to that by an open SMFC after 175days of operation and meanwhile increased the removal rates of anthracene, phenanthrene, and pyrene to 54.2±2.7%, 42.6±1.9% and 27.0±2.1% from 20.8±1.1%, 17.3±1.2% and 11.7±0.9%, respectively, by the open SMFC. Both the electricity generation and the removal of PAHs increased with the decreased electrode interval. When the electrode interval ranged between 4cm and 10cm, the more closely the electrodes were positioned, the more efficient the electricity generation and removal of PAHs became. Dominated by the genus of Geobacter, the SMFC was enriched in electrogenic bacteria at the anode surface, and the growth of certain microbes other than electrogenic bacteria in the soil was improved by electrical stimulation. This finding reveals the critical mechanism underlying electricity generation and improved the removal of PAHs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app