Add like
Add dislike
Add to saved papers

Spontaneous quorum sensing mutation modulates electroactivity of Pseudomonas aeruginosa PA14.

Bioelectrochemistry 2017 October
Pseudomonas aeruginosa is able to interact with the anode of a bioelectrochemical system through redox active phenazines. Earlier studies showed that this interaction is strain and carbon source dependent. With a spontaneously formed ΔlasR mutant of P. aeruginosa PA14 and the wildtype, we investigated the connection between the complex quorum sensing network and current production. Depending on the carbon source, phenazine production and subsequently current generation are effected differently in these two populations. In glucose-fed cultures, the lack of the LasR regulator led to a shift in phenazine concentration, relative composition, and time profiles. In contrast, with the common fermentation product 2,3-butanediol as carbon substrate, no phenazine production was detected for the ΔlasR mutant. For the wildtype, this carbon source is known to induce phenazine synthesis and elevated current production. This work supports the earlier hypothesis of a signaling link between 2,3-butanediol and the quorum-sensing regulatory system and extends this hypothesis to predict a lasR-dependent interaction. The wildtype and mutant population were also evaluated in direct competition, showing strong initial dominance of the wildtype but a higher survival rate of the ΔlasR mutant in later stages of growth. We found no evidence for strong social interactions between these two subpopulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app