Add like
Add dislike
Add to saved papers

Technical Note: Transconvolution based equalization of positron energy effects for the use of 68 Ge/ 68 Ga phantoms in determining 18 F PET recovery.

Medical Physics 2017 July
PURPOSE: Avoiding measurement variability from 18 F phantom preparation by using 68 Ge/68 Ga phantoms for the determination of 18 F recovery curves (RC) in clinical quality assurance measurements and for PET/CT site qualification in multicentre clinical trials.

METHODS: RCs were obtained from PET/CT measurements of seven differently sized phantom spheres filled either with 18 F or with 68 Ga. RCs for the respective other isotope were then determined by two different methods: In the first method, images were convolved with positron range transconvolution functions derived from positron annihilation distributions found in literature. This method generated recasted images matching images using the respective other isotope. In the second method, the PET/CT system's isotope independent (intrinsic) point spread function was determined from said phantom measurements and convolved with numerical representations simulating hot spheres filled with the respective other isotope. These simulations included the isotope specific positron annihilation distributions. Recovered activity concentrations were compared between recasted images, simulated images, and the originally acquired images.

RESULTS: 18 F and 68 Ga recovery was successfully determined from image acquisitions of the respective opposite isotope as well as from the simulations. 68 Ga RCs derived from 18 F data had a normalized root-mean-square deviation (NRMSD) from real 68 Ga measurements of 0.019% when using the first method and of 0.008% when using the second method. 18 F RCs derived from 68 Ga data had a NRMSD from real 18 F measurements of 0.036% when using the first method and of 0.038% when using the second method.

CONCLUSIONS: Applying the principles of transconvolution, 18 F RCs can be recalculated from 68 Ga phantom measurements with excellent accuracy. The maximal additionally introduced error was below 0.4% of the error currently accepted for RCs in the site qualification of multicentre clinical trials by the EARL program of the European Association of Nuclear Medicine (EANM). Therefore, our methods legitimately allow for the use of long-lived solid state 68 Ge/68 Ga phantoms instead of manually prepared 18 F phantoms to characterize comparability of 18 F measurements across different imaging sites or of longitudinal 18 F measurements at a single PET/CT system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app