JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Tuning the Viscoelasticity of Peptide Vesicles by Adjusting Hydrophobic Helical Blocks Comprising Amphiphilic Polypeptides.

Amphiphilic block polypeptides of poly(sarcosine)-b-(l-Val-Aib)6 and poly(sarcosine)-b-(l-Leu-Aib)6 and their stereoisomers were self-assembled in water. Three kinds of binary systems of poly(sarcosine)-b-(l-Leu-Aib)6 with poly(sarcosine)-b-poly(d-Leu-Aib)6 , poly(sarcosine)-b-poly(l-Val-Aib)6 , or poly(sarcosine)-b-(d-Val-Aib)6 generated vesicles of ca. 200 nm diameter. The viscoelasticity of the vesicle membranes was evaluated by the nanoindentation method using AFM in water. The elasticity of the poly(sarcosine)-b-(l-Leu-Aib)6 /poly(sarcosine)-b-poly(d-Leu-Aib)6 vesicle was 11-fold higher than that of the egg yolk liposome but decreased in combinations of the Leu- and Val-based amphiphilic polypeptides. The membrane elasticity is found to be adjustable by a suitable combination of helical blocks in terms of stereocomplex formation and the interdigitation of side chains among helices in the molecular assemblies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app