JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

General Physical Description of the Behavior of Oppositely Charged Polyelectrolyte/Surfactant Mixtures at the Air/Water Interface.

This work reports a unifying general physical description of the behavior of oppositely charged polyelectrolyte/surfactant mixtures at the air/water interface in terms of equilibrium vs nonequilibrium extremes. The poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate system with added NaCl at two different bulk polyelectrolyte concentrations and the poly(sodium styrenesulfonate)/dodecyltrimethylammonium bromide system have been systematically examined using a variety of bulk and surface techniques. Similarities in the general behavior are observed for all the investigated systems. Following the slow precipitation of aggregates in the equilibrium two-phase region, which can take several days or even weeks, depletion of surface-active material can result in a surface tension peak. The limiting time scale in the equilibration of the samples is discussed in terms of a balance between those of aggregate growth and settling. Bulk aggregates may spontaneously dissociate and spread material in the form of a kinetically trapped film if they interact with the interface, and a low surface tension then results out of equilibrium conditions. These interactions can occur prior to bulk equilibration while there remains a suspension of aggregates that can diffuse to the interface and following bulk equilibration if the settled precipitate is disturbed. Two clear differences in the behavior of the systems are the position in the isotherm of the surface tension peak and the time it takes to evolve. These features are both rationalized in terms of the nature of the bulk binding interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app