Add like
Add dislike
Add to saved papers

Identification and Differential Expression of Biomineralization Genes in the Mantle of Pearl Oyster Pinctada fucata.

A series of proteins are involved in shell formation of the pearl oyster Pinctada fucata, but the involved mechanisms and the relative expression levels of these proteins have not been elucidated. In this study, we sequenced and characterized the transcriptome of P. fucata mantle tissue. A total of 100,679 unique transcripts were assembled, 43687 Unigenes were annotated, and 48654 CDSs were determined. Of these, GO annotated 16353 Unigenes, COG defined 11585 unigenes into 25 categories, and KEGG sorted 25053 unigenes into 258 pathways. In total, 67 biomineralization-related genes were identified, of which 23 genes were newly described in P. fucata. These genes included ones that expressed shell matrix proteins, regulatory factors, and uncharacterized genes. Differential expression of these 67 genes and 9 other biomineralization-related genes was confirmed using qPCR. Of the 8 nacreous layer-related genes, MSI60 (774.00) was expressed at a much higher level than the others. KRMP2-4 and MSI31 were the most highly expressed of the 13 prismatic layer-related genes and KRMP2 was expressed at nearly 10000 times of the level of the 18S gene. For genes related to both layers, shematrin 2 (3977.84), nacrein (2404.75), PFMG 10 (2113.93), and PFMG 4 (1015.89) were highly expressed, and ferritin-like protein (877.54) and PFMG 8 (516.48) were highly expressed among the 16 undefined genes. The expression levels of regulation factors were generally low, and the highest level was 324.09 (EF-hand) and the lowest occurred in the BMP and wnt families. The expression levels of the prismatic matrix proteins were much higher than those of nacreous ones, consistent with a thicker prismatic layer. MSI60 and nacrein are likely the main components of the nacreous layer, and KRMP2-4, MSI31, shematrin 2, and PFMG 10 gene products are the main components of the prismatic layer. This is the first report of transient expression levels of a large number of biomineralization-related genes at the same time in mantle tissue of P. fucata. These findings provide a novel perspective to understand the molecular mechanisms of shell formation and will be beneficial to genetic improvement of P. fucata for the production of high-quality pearls as well.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app