Add like
Add dislike
Add to saved papers

Sensitivity to Nonaccidental Configurations of Two-Line Stimuli.

I-Perception 2017 March
According to Recognition-By-Components theory, object recognition relies on a specific subset of three-dimensional shapes called geons. In particular, these configurations constitute a powerful cue to three-dimensional object reconstruction because their two-dimensional projection remains viewpoint-invariant. While a large body of literature has demonstrated sensitivity to changes in these so-called nonaccidental configurations, it remains unclear what information is used in establishing such sensitivity. In this study, we explored the possibility that nonaccidental configurations can already be inferred from the basic constituents of objects, namely, their edges. We constructed a set of stimuli composed of two lines corresponding to various nonaccidental properties and configurations underlying the distinction between geons, including collinearity, alignment, curvature of contours, curvature of configuration axis, expansion, cotermination, and junction type. Using a simple visual search paradigm, we demonstrated that participants were faster at detecting targets that differed from distractors in a nonaccidental property than in a metric property. We also found that only some but not all of the observed sensitivity could have resulted from simple low-level properties of our stimuli. Given that such sensitivity emerged from a configuration of only two lines, our results support the view that nonaccidental configurations could be encoded throughout the visual processing hierarchy even in the absence of object context.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app