Journal Article
Randomized Controlled Trial
Add like
Add dislike
Add to saved papers

Effect of sodium nitrite on renal function and sodium and water excretion and brachial and central blood pressure in healthy subjects: a dose-response study.

Sodium nitrite (NaNO2 ) is converted to nitric oxide (NO) in vivo and has vasodilatory and natriuretic effects. Our aim was to examine the effects of NaNO2 on hemodynamics, sodium excretion, and glomerular filtration rate (GFR). In a single-blinded, placebo-controlled, crossover study, we infused placebo (0.9% NaCl) or 0.58, 1.74, or 3.48 μmol NaNO2 ·kg-1 ·h-1 for 2 h in 12 healthy subjects, after 4 days of a standard diet. Subjects were supine and water loaded. We measured brachial and central blood pressure (BP), plasma concentrations of renin, angiotensin II, aldosterone, arginine vasopressin (P-AVP), and plasma nitrite (P-[Formula: see text]), GFR by Cr-EDTA clearance, fractional excretion of sodium (FENa ) free water clearance (CH2O ), and urinary excretion rate of guanosine 3',5'-cyclic monophosphate (U-cGMP). The highest dose reduced brachial systolic BP (5.6 mmHg, P = 0.003), central systolic BP (5.6 mmHg, P = 0.035), and CH2O (maximum change from 3.79 to 1.27 ml/min, P = 0.031) and increased P-[Formula: see text] (from 0.065 to 0.766 μmol/l, P < 0.001), while reducing U-cGMP (from 444 to 247 pmol/min, P = 0.004). GFR, FENa , P-AVP, and the components in the renin-angiotensin-aldosterone system did not change significantly. In conclusion, intravenous NaNO2 induced a dose-dependent reduction of brachial and central BP. The hemodynamic effect was not mediated by the renin-angiotensin-aldosterone system. NaNO2 infusion resulted in a vasopressin-independent decrease in CH2O and urine output but no change in urinary sodium excretion or GFR. The lack of increase in cGMP accompanying the increase in [Formula: see text] suggests a direct effect of nitrite or nitrate on the renal tubules and vascular bed with little or no systemic conversion to NO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app