Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ultrathin and Highly Passivating Silica Shells for Luminescent and Water-Soluble CdSe/CdS Nanorods.

Microemulsion (water-in-oil) methods enable the encapsulation of individual nanoparticles into SiO2 spheres. The major drawbacks of this method, when applied for silica encapsulation of anisotropic nanorods (NRs), are spatially unequal silica growth and long reaction times (24 h at least). In this work, various tetraalkoxysilanes [tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (TEOS), and tetrapropyl orthosilicate (TPOS)] with different alkyl-chain lengths were used as silica precursors in attempt to tune the silanization behavior of CdSe/CdS NRs in a microemulsion system. We find enhanced spatial homogeneity of silica growth with decreasing alkyl-chain length of the tetraalkoxysilanes. In particular, by use of TMOS as the precursor, NRs can be fully encapsulated in a continuous thin (≤5 nm) silica shell within only 1 h reaction time. Surprisingly, the thin silica shell showed a superior shielding ability to acidic environment, even compared to the 30 nm thick shell prepared by use of TEOS. Our investigations suggest that the lower steric hindrance of TMOS compared to TEOS or TPOS strongly promotes homogeneous growth of the silica shells, while its increased hydrolysis rate decreases the porosity of these shells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app