Add like
Add dislike
Add to saved papers

On-the-Fly ab Initio Semiclassical Calculation of Glycine Vibrational Spectrum.

We present an on-the-fly ab initio semiclassical study of vibrational energy levels of glycine, calculated by Fourier transform of the wavepacket correlation function. It is based on a multiple coherent states approach integrated with monodromy matrix regularization for chaotic dynamics. All four lowest-energy glycine conformers are investigated by means of single-trajectory semiclassical spectra obtained upon classical evolution of on-the-fly trajectories with harmonic zero-point energy. For the most stable conformer I, direct dynamics trajectories are also run for each vibrational mode with energy equal to the first harmonic excitation. An analysis of trajectories evolved up to 50 000 atomic time units demonstrates that, in this time span, conformers II and III can be considered as isolated species, while conformers I and IV show a pretty facile interconversion. Therefore, previous perturbative studies based on the assumption of isolated conformers are often reliable but might be not completely appropriate in the case of conformer IV and conformer I for which interconversion occurs promptly.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app