Add like
Add dislike
Add to saved papers

Smart Asymmetric Vesicles with Triggered Availability of Inner Cell-Penetrating Shells for Specific Intracellular Drug Delivery.

Smart nanocarriers attract considerable interest in the filed of precision nanomedicine. Dynamic control of the interaction between nanocarriers and cells offers the feasibility that in situ activates cellular internalization at the targeting sites. Herein, we demonstrate a novel class of enzyme-responsive asymmetric polymeric vesicles self-assembled from matrix metalloproteinase (MMP)-cleavable peptide-linked triblock copolymer, poly(ethylene glycol)-GPLGVRG-b-poly(ε-caprolactone)-b-poly(3-guanidinopropyl methacrylamide) (PEG-GPLGVRG-PCL-PGPMA), in which the cell-penetrating PGPMA segments asymmetrically distribute in the outer and inner shells with fractions of 9% and 91%, respectively. Upon treatment with MMP-2 to cleave the stealthy PEG shell, the vesicles undergo morphological transformation into fused multicavity vesicles and small nanoparticles, accompanied by redistribution of PGPMA segments with 76% exposed to the outside. The vesicles after dePEGylation show significantly increased cellular internalization efficiency (∼10 times) as compared to the original ones due to the triggered availability of cell-penetrating shells. The vesicles loading hydrophobic anticancer drug paclitaxel (PTX) in the membrane exhibit significantly enhanced cytotoxicity against MMP-overexpressing HT1080 cells and multicellular spheroids. The proposed vesicular system can serve as a smart nanoplatform for in situ activating intracellular drug delivery in MMP-enriched tumors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app