Add like
Add dislike
Add to saved papers

Dual Stimuli-Responsive Nanoparticles for Controlled Release of Anticancer and Anti-inflammatory Drugs Combination.

Dual stimuli-responsive nanoparticles capable of fine-tuning drug release to augment therapeutic efficacy have become a promising tool for anticancer drug delivery. However, the rational design of these "smart" nanoparticles for a selective delivery and controlled release of multidrug combinations in cancer cells to achieve synergistic effects remain challenging. Here we report the pH/redox dual responsive nanoparticle FA-DOX-Ind-NP (FA=folic acid, DOX=doxorubicin, Ind=indomethacin, NP=nanoparticle) based on the novel tumor targeting and biodegradable poly(β-amino ester) polymer, and demonstrate its high ability to enter into cancer cells and release a combination of the anticancer drug doxorubicin and the non-steroidal anti-inflammatory drug indomethacin to achieve synergistic chemo-anti-inflammatory effects and overcome multidrug resistance. This study highlights the great potential of tumor targeting and dual stimuli-responsive nanoparticles for an efficient delivery of multidrug combination to improve the cancer therapeutic efficacy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app