Add like
Add dislike
Add to saved papers

Flexible and Highly Photosensitive Electrolyte-Gated Organic Transistors with Ionogel/Silver Nanowire Membranes.

Flexible and low-voltage photosensors with high near-infrared (NIR) sensitivity are critical for realization of interacting humans with robots and environments by thermal imaging or night vision techniques. In this work, we for the first time develop an easy and cost-effective process to fabricate flexible and ultrathin electrolyte-gated organic phototransistors (EGOPTs) with high transparent nanocomposite membranes of high-conductivity silver nanowire (AgNW) networks and large-capacitance iontronic films. A high responsivity of 1.5 × 103 A·W1- , high sensitivity of 7.5 × 105 , and 3 dB bandwidth of ∼100 Hz can be achieved at very low operational voltages. Experimental studies in temporal photoresponse characteristics reveal the device has a shorter photoresponse time at lower light intensity since strong interactions between photoexcited hole carriers and anions induce extra long-lived trap states. The devices, benefiting from fast and air-stable operations, provide the possibility of the organic photosensors for constructing cost-effective and smart optoelectronic systems in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app