Add like
Add dislike
Add to saved papers

Redesign of antifungal polyene glycosylation: engineered biosynthesis of disaccharide-modified NPP.

Polyene macrolides such as nystatin A1 and amphotericin B have been known to be potent antifungal antibiotics for several decades. Because the therapeutic application of polyenes is restricted by severe side effects such as nephrotoxicity, various chemical and biological studies to modify the polyene structure have been conducted to develop less-toxic polyene antifungals. A newly discovered nystatin-like polyene compound NPP was shown to contain an aglycone that was identical to nystatin but harbored a unique di-sugar moiety, mycosaminyl-N-acetyl-glucosamine, which led to higher solubility and reduced hemolytic toxicity. Additionally, a NPP-specific second sugar extending gene, nppY, was recently identified to be responsible for the transfer of a second sugar, N-acetyl-glucosamine, in NPP biosynthesis. In this study, we investigated biosynthesis of the glycoengineered NPP analog through genetic manipulation of the NPP A1 producer, Pseudonocardia autotrophica KCTC9441. NypY is another second sugar glycosyltransferase produced by Pseudonocardia sp. P1 that is responsible for the transfer of a mannose to the mycosaminyl sugar residue of nystatin. We blocked the transfer of a second sugar through nppY disruption, then expressed nypY in P. autotrophica △nppY mutant strain. When compared with nystain A1 and NPP A1, the newly engineered mannosylated NPP analog showed reduced in vitro antifungal activity, while exhibiting higher nephrotoxical activities against human hepatocytes. These results suggest for the first time that not only the number of sugar residues but also the type of extended second sugar moiety could affect biological activities of polyene macrolides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app