Add like
Add dislike
Add to saved papers

Cyclic AMP responsive element-binding protein induces metastatic renal cell carcinoma by mediating the expression of matrix metallopeptidase-2/9 and proteins associated with epithelial-mesenchymal transition.

Renal cell carcinoma (RCC) is the most frequently occurring malignancy of the kidney worldwide. Anti-angiogenic targeted therapies inhibit the progression of RCC, however, limited effects on the invasion or metastasis of tumor cells have been observed. Cyclic AMP responsive element‑binding protein (CREB) is a serine/threonine kinase that has been implicated in the regulation of cell proliferation, apoptosis, cycle progression and metastasis, amongst others. Our previous research demonstrated that phosphorylated CREB (pCREB) was upregulated in human renal cancer cell lines and tissues, and decreased pCREB at the Ser133 site inhibited the growth and metastatic activity of OS‑RC‑2 cells. However, the role of CREB in RCC metastasis requires further investigation. Thus, the present study further investigated the role of CREB in RCC metastasis. The present study demonstrated that knockdown of CREB using small interfering RNA (siRNA) that targeted CREB (siCREB) significantly inhibited the migration and invasion of 786‑O and OS‑RC‑2 cells, however, the opposite effect was observed in ACHN cells. In addition, knockdown of CREB suppressed the expression of matrix metallopeptidase (MMP)‑2/9 and proteins associated with epithelial‑mesenchymal transition (EMT) in 786‑O and OS‑RC‑2 cells, and promoted expression in ACHN cells. Furthermore, the chromatin immunoprecipitation assay indicated that pCREB (Ser133) had a direct interaction with the fibronectin promoter, however, pCREB (Ser133) did not target the vimentin promoter in RCC. Therefore, the results of the present study indicate that CREB regulated metastatic RCC by mediating the expression of MMP‑2/9 and EMT‑associated proteins, however, CREB‑mediated MMP‑2/9 and EMT‑associated protein expression may be induced by different pathways in different RCC cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app