Add like
Add dislike
Add to saved papers

Node-Structured Integrative Gaussian Graphical Model Guided by Pathway Information.

Up to date, many biological pathways related to cancer have been extensively applied thanks to outputs of burgeoning biomedical research. This leads to a new technical challenge of exploring and validating biological pathways that can characterize transcriptomic mechanisms across different disease subtypes. In pursuit of accommodating multiple studies, the joint Gaussian graphical model was previously proposed to incorporate nonzero edge effects. However, this model is inevitably dependent on post hoc analysis in order to confirm biological significance. To circumvent this drawback, we attempt not only to combine transcriptomic data but also to embed pathway information, well-ascertained biological evidence as such, into the model. To this end, we propose a novel statistical framework for fitting joint Gaussian graphical model simultaneously with informative pathways consistently expressed across multiple studies. In theory, structured nodes can be prespecified with multiple genes. The optimization rule employs the structured input-output lasso model, in order to estimate a sparse precision matrix constructed by simultaneous effects of multiple studies and structured nodes. With an application to breast cancer data sets, we found that the proposed model is superior in efficiently capturing structures of biological evidence (e.g., pathways). An R software package nsiGGM is publicly available at author's webpage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app