JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A Facile Strategy to Prepare an Enzyme-Responsive Mussel Mimetic Coating for Drug Delivery Based on Mesoporous Silica Nanoparticles.

Surface functional mesoporous silica nanoparticles (MSNs) have been widely used as promosing materials for drug delivery. Herein, we reported a facile strategy to construct MSNs coated by enzyme-resposive polylysine-dopamine (PLDA) films through self-polymerization of dopamine derivative lysine-dopamine, in which the drug could be loaded and delivered efficiently. In detail, RhB or DOX was used as a drug model and loaded in functional MSNs via a one-pot procedure among MSNs, drug, and lysine-dopamine (LDA) under basic conditions. Owing to the fact that the peptide bonds between lysine and dopamine can be cleaved under triggering by pepsin, the resulting RhB/DOX@PLDA-MSNs exibit enzyme-responsive characterization. After the DOX@PLDA-MSNs enter into the cancer cells, the drug can be released effectively through degradation of peptide bonds under the influence of enzyme in cancer cells, which shows marked anticancer activity in vitro. This facile strategy may provide a new platform to construct enzyme-responsive controlled drug delivery systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app