JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Platinum-induced mitochondrial DNA mutations confer lower sensitivity to paclitaxel by impairing tubulin cytoskeletal organization.

Development of chemoresistance is a cogent clinical issue in oncology, whereby combination of anticancer drugs is usually preferred also to enhance efficacy. Paclitaxel (PTX), combined with carboplatin, represents the standard first-line chemotherapy for different types of cancers. We here depict a double-edge role of mitochondrial DNA (mtDNA) mutations induced in cancer cells after treatment with platinum. MtDNA mutations were positively selected by PTX, and they determined a decrease in the mitochondrial respiratory function, as well as in proliferative and tumorigenic potential, in terms of migratory and invasive capacity. Moreover, cells bearing mtDNA mutations lacked filamentous tubulin, the main target of PTX, and failed to reorient the Golgi body upon appropriate stimuli. We also show that the bioenergetic and cytoskeletal phenotype were transferred along with mtDNA mutations in transmitochondrial hybrids, and that this also conferred PTX resistance to recipient cells. Overall, our data show that platinum-induced deleterious mtDNA mutations confer resistance to PTX, and confirm what we previously reported in an ovarian cancer patient treated with carboplatin and PTX who developed a quiescent yet resistant tumor mass harboring mtDNA mutations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app