JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Atomic force phase imaging for dynamic detection of adsorbed hydrogen on a catalytic palladium surface under liquid.

Ultramicroscopy 2017 October
Dynamic observation of hydrogen on catalytic metal surfaces is a challenging aspect of studying liquid-phase heterogeneous catalysis. Current methods suffer from one or more of the following limitations: the requirement to observe the surface in high vacuum, the inability to provide nanometer-level spatial resolution, the inability to deal with opaque catalysts and/or liquid immersion phase, the lack of real-time scanning of the surface area, and the inability to assess pronounced topographies or mixed materials. Atomic force microscopy (AFM) phase-shift imaging remedies these issues and provides an opportunity for dynamic direct observation of catalyst surfaces at or near actual reaction conditions immersed in liquid. Hydrogen was delivered to a palladium surface immersed in water by diffusion through a support film of dense polycarbonate. The palladium surface was continuously probed by tapping-mode AFM. The theoretically predicted time-dependent appearance of hydrogen on the water-covered palladium surface matched the experimental observation reasonably well. The technique demonstrated here is unique in that the appearance of hydrogen is dynamically detected in real time on a catalyst surface immersed in water with nanometer-scale spatial resolution. The results presented here supply a new level of information for heterogeneous catalysis that is not available with existing techniques. This work opens new avenues in the study of heterogeneous catalysis, a field with tremendous practical importance and serious analytical challenges.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app