Add like
Add dislike
Add to saved papers

Acteoside and Acyl-Migrated Acteoside, Compounds in Chinese Kudingcha Tea, Inhibit α-Amylase In Vitro.

Acteoside, the predominant polyphenol of small-leaved kudingcha, the Chinese tea, has various biological activities. In this study, we examined the acyl migration of acteoside to isoacteoside with high-temperature treatment of acteoside. The inhibitory effects of acyl-migrated acteoside and acteoside on α-amylase were investigated, as were their binding interaction with α-amylase. The binding of acteoside and isoacteoside to α-amylase was investigated by using the fluorescence spectra assay, circular dichroism, and protein-ligand docking studies. Acteoside was more effective than preheated acteoside and isoacteoside in inhibiting α-amylase activity. Acteoside and isoacteoside binding to α-amylase may induce conformational changes to α-amylase, and the binding site of acteoside and isoacteoside being near the active site pocket of α-amylase may explain the decreased activity of α-amylase. The different affinities and binding sites of acteoside and isoacteoside for α-amylase resulted in different inhibition rates, which may be due to structural differences between acteoside and isoacteoside.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app