Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Cooperative Interactions in the Hammerhead Ribozyme Drive pK a Shifting of G12 and Its Stacked Base C17.

Biochemistry 2017 May 24
General acid-base catalysis is a key mechanistic strategy in protein and RNA enzymes. Ribozymes use hydrated metal ions, nucleobases, and organic cofactors to carry this out. In most small ribozymes, a guanosine is positioned to participate in proton transfer with the nucleophilic 2'-OH. The unshifted pKa values for nucleobases and solvated metal ions are far from neutrality, however, and thus nonideal for general acid-base catalysis. Herein, evidence is provided for cooperative interaction in the hammerhead ribozyme among the guanine that interacts with the nucleophilic 2'-OH, G12, the -1 nucleobase C17, and Mg2+ ions. We introduce global fitting for analyzing ribozyme rate-pH data parametric in Mg2+ concentration and benchmark this method on data from the hepatitis delta virus ribozyme. We then apply global fitting to new rate-pH data for the hammerhead ribozyme using a minimal three-dimensional, four-channel cooperative model. The value for the pKa of G12 that we obtain is channel-dependent and varies from 8.1 to 9.9, shifting closest toward neutrality in the presence of two cationic species: C17H+ and a Mg2+ ion. The value for the pKa of the -1 nucleotide, C17, is increased a remarkable 3.5-5 pKa units toward neutrality. Shifting of the pKa of C17 appears to be driven by an electrostatic sandwich of C17 between carbonyl groups of the 5'-neighboring U and of G12 and involves cation-π interactions. Rate-pH profiles reveal that the major reactive channel under biological Mg2+ and pH involves a cationic C17 rather than a second metal ion. Substitution of a cationic base for a metal underscores the versatility of RNA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app