Add like
Add dislike
Add to saved papers

Two-Dimensional Metal-Organic Layers as a Bright and Processable Phosphor for Fast White-Light Communication.

A metal-organic layer (MOL) is a new type of 2D material that is derived from metal-organic frameworks (MOFs) by reducing one dimension to a single layer or a few layers. Tetraphenylethylene-based tetracarboxylate ligands (TCBPE), with aggregation-induced emission properties, were assembled into the first luminescent MOL by linking with Zr6 O4 (OH)6 (H2 O)2 (HCO2 )6 clusters. The emissive MOL can replace the lanthanide phosphors in white light emitting diodes (WLEDs) with remarkable processability, color rendering, and brightness. Importantly, the MOL-WLED exhibited a physical switching speed three times that of commercial WLEDs, which is crucial for visible-light communication (VLC), an alternative wireless communication technology to Wi-Fi and Bluetooth, by using room lighting to carry transmitted signals. The short fluorescence lifetime (2.6 ns) together with high quantum yield (50 %) of the MOL affords fast switching of the assembled WLEDs for efficient information encoding and transmission.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app