Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Shikonin Inhibited Migration and Invasion of Human Lung Cancer Cells via Suppression of c-Met-Mediated Epithelial-to-Mesenchymal Transition.

Epithelial-to-mesenchymal transition (EMT) is a major process to regulate cell migration and invasion. Inhibition of epidermal growth factor receptor (EGFR)-mediated EMT by tyrosine kinase inhibitors (TKIs) is a strategy to prevent lung cancer invasion. However, drug resistance is emerged and accelerated invasion through other signaling bypassing EGFR after TKIs therapy. c-Met signaling pathway is highly activated in EGFR-mutated lung cancer cells. Targeting c-Met signaling pathway may be a strategy to suppress EGFR-independent migration and invasion for lung cancer therapy. Therefore, we examined the anti-migration and anti-invasion abilities of shikonin, an active compound from Lithospermum erythrorhizon, in highly and ligand-induced c-Met activation lung cancer cells. Our results revealed that cell viability and cell cycle progression did not change under 1 μM of shikoinin treatment in highly c-Met expressive HCC827 lung cancer cells. Endogenous c-Met activation was dose-dependently inhibited and the migration and invasion activity of HCC827 cells were suppressed by shikonin treatment. Induction of E-cadherin expression and inhibition of vimentin, slug, and snail expression by shikonin was through c-Met-mediated PI3K/Akt and ERK signaling suppression. Furthermore, hepatocyte growth factor (HGF)-induced migration, invasion and EMT marker change were reversed by shikonin in low c-Met expressive A549 lung cancer cells. Inhibition of HGF-induced c-Met, PI3K/Akt and MEK/ERK activation were observed in shikonin-treated cells. Co-treatment of PI3K/Akt inhibitor or ERK inhibitor with shikonin enhanced shikonin-reversed HGF-regulated EMT marker expression. Taken together, the results suggested that the anti-migration and anti-invasion activities of shikonin was through c-Met inhibition and following by EMT suppression in lung cancer. J. Cell. Biochem. 118: 4639-4651, 2017. © 2017 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app