Add like
Add dislike
Add to saved papers

Perturbation of the pulmonary surfactant monolayer by single-walled carbon nanotubes: a molecular dynamics study.

Nanoscale 2017 July 28
Single-walled carbon nanotubes (SWCNTs) are at present synthesized on a large scale with a variety of applications. The increasing likelihood of exposure to SWCNTs, however, puts human health at a high risk. As the front line of the innate host defense system, the pulmonary surfactant monolayer (PSM) at the air-water interface of the lungs interacts with the inhaled SWCNTs, which in turn inevitably perturb the ultrastructure of the PSM and affect its biophysical functions. Here, using molecular dynamics simulations, we demonstrate how the diameter and length of SWCNTs critically regulate their interactions with the PSM. Compared to their diameters, the inhalation toxicity of SWCNTs was found to be largely affected by their lengths. Short SWCNTs with lengths comparable to the monolayer thickness are found to vertically insert into the PSM with no indication of translocation, possibly leading to accumulation of SWCNTs in the PSM with prolonged retention and increased inflammation potentials. The perturbation also comes from the forming water pores across the PSM. Longer SWCNTs are found to horizontally insert into the PSM during inspiration, and they can be wrapped by the PSM during deep expiration via a tube diameter-dependent self-rotation. The potential toxicity of longer SWCNTs comes from severe lipid depletion and the PSM-rigidifying effect. Our findings could help reveal the inhalation toxicity of SWCNTs, and pave the way for the safe use of SWCNTs as vehicles for pulmonary drug delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app