Add like
Add dislike
Add to saved papers

Thermal conductivity of Bi 2 Te 3 nanowires: how size affects phonon scattering.

Nanoscale 2017 May 26
This work provides an in-depth study of how the thermal conductivity of stoichiometric [110] Bi2 Te3 nanowires becomes affected when reducing its diameter from an experimental and theoretical point of view. The thermal conductivity was observed to decrease more than 70% (from 1.78 ± 0.46 W K-1 m-1 to 0.52 ± 0.35 W K-1 m-1 ) when the diameter of the nanowire was reduced one order of magnitude (from 300 nm to 25 nm). The Kinetic-Collective model was used to understand such a reduction, which can be explained by the impact that surface scattering has in acoustic phonons. The smaller the diameter of the nanowires is, the larger the alteration in the mean free path of the low-frequency phonons is. The model agrees well with the experimental data, and the reduction in the thermal conductivity of the nanowires can be explained in terms of an increment of phonon scattering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app