Add like
Add dislike
Add to saved papers

Charge-Directed Immobilization of Bacteriophage on Nanostructured Electrode for Whole-Cell Electrochemical Biosensors.

A new type of carbon nanotube (CNT)-based impedimetric biosensing method has been developed for rapid and selective detection of live bacterial cells. A proof-of-concept study was conducted using T2 bacteriophage-based biosensors for electrochemical detection of Escherichia coli B. The T2 bacteriophage (virus) served as the biorecognition element, which was immobilized on polyethylenimine (PEI)-functionalized carbon nanotube transducer on glassy carbon electrode. Charge-directed, orientated immobilization of bacteriophage particles on carbon nanotubes was achieved through covalent linkage of phage capsid onto the carbon nanotubes. The presence of the immobilized phage on carbon nanotube-modified electrode was confirmed by fluorescence microscopy. Electrochemical impedance spectroscopy (EIS) was used to monitor the changes in the interfacial impedance due to the binding of E. coli B to T2 phage on the CNT-modified electrode. The detection was highly selective toward the B strain of E. coli as no signal was observed for the nonhost K strain of E. coli. The present achievable detection limit of the biosensor is 103 CFU/mL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app