Add like
Add dislike
Add to saved papers

Inhibition of cytochrome P450 and uridine 5'-diphospho-glucuronosyltransferases by MAM-2201 in human liver microsomes.

MAM-2201, a synthetic cannabinoid, is a potent agonist of the cannabinoid receptors and is increasingly used as an illicit recreational drug. The inhibitory effects of MAM-2201 on major drug-metabolizing enzymes such as cytochrome P450s (CYPs) and uridine 5'-diphospho-glucuronosyltransferases (UGTs) have not yet been investigated although it is widely abused, sometimes in combination with other drugs. We evaluated the inhibitory effects of MAM-2201 on eight major human CYPs (CYPs 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4) and six UGTs (UGTs 1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) of pooled human liver microsomes; we thus explored potential MAM-2201-induced drug interactions. MAM-2201 potently inhibited CYP2C9-catalyzed diclofenac 4'-hydroxylation, CYP3A4-catalyzed midazolam 1'-hydroxylation, and UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation, with K i values of 5.6, 5.4 and 5.0 µM, respectively. MAM-2201 exhibited mechanism-based inhibition of CYP2C8-catalyzed amodiaquine N-de-ethylation with K i and k inact values of 1.0 µM and 0.0738 min-1 , respectively. In human liver microsomes, MAM-2201 (50 µM) negligibly inhibited CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7. Based on these in vitro results, we conclude that MAM-2201 has the potential to trigger in vivo pharmacokinetic drug interactions when co-administered with substrates of CYP2C8, CYP2C9, CYP3A4, and UGT1A3.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app