Add like
Add dislike
Add to saved papers

Improving repeatability of capillary electrophoresis-a critical comparison of ten different capillary inner surfaces and three criteria of peak identification.

A poor repeatability of migration times caused by the fluctuations of electroosmotic flow (EOF) is an inherent weakness of capillary electrophoresis. Most researchers endeavor to prevent this problem using relative migration times or various capillary coatings which are expensive and not easy in comparison. Herein, we present an original approach to this problem: we apply a model sample designed to induce significant EOF instability, in order to critically compare ten capillary types with different physicochemical characteristics. Moreover, we accompany capillary modification with the evaluation of various criteria of peak identification: migration time, migration times ratio, and electrophoretic mobility. Our results show a great effectiveness of a dynamic coating in the stabilization of migration times, with the average RSD(%) value reduced from 3.5% (bare silica capillary) down to 0.5%. The good outcomes were also obtained for the surfactant-modified silica and amine capillaries. For the capillaries exhibiting significant instability of EOF, electrophoretic mobility turned out to be a more universal and reliable criterion of peak identification than relative migration time. It can be explained by an intrinsic dependency of migration times ratio on EOF change, which should always be considered during the selection of an internal standard.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app