Add like
Add dislike
Add to saved papers

Characterization of the lipid envelope of exosome encapsulated HEV particles protected from the immune response.

Biochimie 2017 October
The hepatitis E virus (HEV) is the most common cause of acute hepatitis worldwide. Although HEV is a small, naked RNA virus, HEV particles become associated with lipids in the blood of infected patients and in the supernatant of culture systems. The egress of these particles from cells implies the exocytosis pathway but the question of the role of the resulting HEV RNA containing exosomes and the nature of the lipids they contain has not been fully addressed. We determined the lipid proportions of exosomes from uninfected and HEV-infected cells and their role in HEV spreading. We cultured a suitable HEV strain on HepG2/C3A cells and analyzed the population of exosomes containing HEV RNA using lipidomics methods and electron microscopy. We also quantified HEV infectivity using an infectivity endpoint method based on HEV RNA quantification to calculate the tissue culture infectious dose 50. Exosomes produced by HEV-infected HepG2/C3A cells contained encapsidated HEV RNA. These HEV RNA-containing exosomes were infectious but ten times less than stools. HEV from stools, but not exosome-associated HEV from culture supernatant, was neutralized by anti-HEV antibodies in a dose-dependent manner. HEV infection did not influence the morphology or lipid proportions of the bulk of exosomes. These exosomes contained significantly more cholesterol, phosphatidylserine, sphingomyelin and ceramides than the parent cells, but less phosphoinositides and polyunsaturated fatty acids. Exosomes play a major role in HEV egress but HEV infection does not modify the characteristics of the bulk of exosomes produced by infected cells. PS and cholesterol enriched in these vesicles could then be critical for HEV entry. HEV particles in exosomes are protected from the immune response which could lead to the wide circulation of HEV in its host.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app