JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Characterization of constitutive and acid-induced outwardly rectifying chloride currents in immortalized mouse distal tubular cells.

Thiazides block Na+ reabsorption while enhancing Ca2+ reabsorption in the kidney. As previously demonstrated in immortalized mouse distal convoluted tubule (MDCT) cells, chlorothiazide application induced a robust plasma membrane hyperpolarization, which increased Ca2+ uptake. This essential thiazide-induced hyperpolarization was prevented by the Cl- channel inhibitor 5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), implicating NPPB-sensitive Cl- channels, however the nature of these Cl- channels has been rarely described in the literature. Here we show that MDCT cells express a dominant, outwardly rectifying Cl- current at extracellular pH7.4. This constitutive Cl- current was more permeable to larger anions (Eisenman sequence I; I- >Br- ≥Cl- ) and was substantially inhibited by >100mM [Ca2+ ]o , which distinguished it from ClC-K2/barttin. Moreover, the constitutive Cl- current was blocked by NPPB, along with other Cl- channel inhibitors (4,4'-diisothiocyanatostilbene-2,2'-disulfonate, DIDS; flufenamic acid, FFA). Subjecting the MDCT cells to an acidic extracellular solution (pH<5.5) induced a substantially larger outwardly rectifying NPPB-sensitive Cl- current. This acid-induced Cl- current was also anion permeable (I- >Br- >Cl- ), but was distinguished from the constitutive Cl- current by its rectification characteristics, ion sensitivities, and response to FFA. In addition, we have identified similar outwardly rectifying and acid-sensitive currents in immortalized cells from the inner medullary collecting duct (mIMCD-3 cells). Expression of an acid-induced Cl- current would be particularly relevant in the acidic IMCD (pH<5.5). To our knowledge, the properties of these Cl- currents are unique and provide the mechanisms to account for the Cl- efflux previously speculated to be present in MDCT cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app