Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Mathematical model for isometric and isotonic muscle contractions.

A new mathematical model is presented to describe both the active and passive mechanics of muscles. In order to account for the active response, a two-layer kinematics that introduces both the visible and rest lengths of the muscle is presented within a rational mechanics framework. The formulation is based on an extended version of the principle of virtual power and the dissipation principle. By using an accurate constitutive description of muscle mobility under activation, details of microscopic processes that lead to muscle contraction are glossed over while macroscopic effects of chemical/electrical stimuli on muscle mechanics are retained. The model predictions are tested with isometric and isotonic experimental data collected from murine extensor digitorum muscle. It is shown that the proposed model captures experimental observations with only three scalar parameters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app