Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

LAMP-2 mediates oxidative stress-dependent cell death in Zn 2+ -treated lung epithelium cells.

Zinc is an essential element for the biological system. However, excessive exogenous Zn2+ would disrupt cellular Zn2+ homeostasis and cause toxicity. In particular, Zinc salts or ZnO nanoparticles exposure could induce respiratory injury. Although previous studies have indicated that organelle damage (including mitochondria or lysosomes) and reactive oxygen species (ROS) production are involved in Zn2+ -induced toxicity, the interplay between mitochondria/lysosomes damage and ROS production is obscure. Herein, we demonstrated that Zn2+ could induce deglycosylation of lysosome-associated membrane protein 1 and 2 (LAMP-1 and LAMP-2), which primarily locate in late endosomes/lysosomes, in A549 lung epithelium cells. Intriguingly, LAMP-2 knockdown further aggravated Zn2+ -mediated ROS production and cell death, indicating LAMP-2 (not LAMP-1) was involved in Zn2+ -induced toxicity. Our results provide a new insight that LAMP-2 contributes to the ROS clearance and cell death induced by Zn2+ treatment, which would help us to get a better understanding of Zn2+ -induced toxicity in respiratory system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app