COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

The impact of exposure route for class-based compounds: a comparative approach of lethal toxicity data in rodent models.

Relationships of toxicities from intravenous (i.v.), intraperitoneal (i.p.), subcutaneous (s.c.) and intragastric (i.g.) exposure routes to mice were investigated. Regression analysis showed that the toxicities from i.v. route is strongly correlated with i.p. and s.c. routes, but poorly with i.g. route. Close toxicities from different routes for some compounds indicate that distribution rate is the determining step and dictates chemical concentration at the target site(s). On the other hand, the absorption rate is the determining step for many compounds, which lead to different toxicities between exposure routes. The classified compounds characterized as having either absorption or distribution rate determining step were based upon the comparison of toxicities from the different routes. We found that some aliphatic acids and benzoic acids have lower toxicity values from i.g. route compared to an i.v. route because of poor absorption. Many compounds show low toxic effects from i.g. route than those from other routes because of the first-pass metabolism in the gastrointestinal tract, resulting in the poor relationship for toxicities between i.g. and i.v. or other routes. Stepwise regression analysis showed that physicochemical properties of a compound, such as molecular volume, polarizability and hydrophobicity, significantly affect adsorption rate, which leads to different toxicities based upon exposure routes. Comparison of the toxicities between mice and rats indicate that toxic effect and the toxicokinetic processes in mice are very similar to that in rats. A universal correlation equation has been developed for the toxicities between rats and mice from different exposure routes, which can be applied to predict toxicities across species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app