Add like
Add dislike
Add to saved papers

A bridging SF/Alg composite scaffold loaded NGF for spinal cord injury repair.

Neurons loss and axons degeneration after spinal cord injury (SCI) gradually give rise to result in functional motor and sensory impairment. A bridging biomaterial scaffold that allows the axons to grow through has been investigated for the repair of injured spinal cord. In this study, we introduced a silk fibroin (SF)-based neurobridge as scaffold enriched with/without nerve growth factor (NGF) that can be utilized as a therapeutic approach for spinal cord repair. NGF released from alginate (Alg) microspheres on SF scaffold (SF/Alg composites scaffolds) to the central lesion site of SCI significantly enhanced the sparing of spinal cord tissue and increased the number of surviving neurons. This optimal multi-disciplinary approach of combining biomaterials, controlled-release microspheres and neurotrophic factors offers a promising treatment for the injured spinal cord.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app