Add like
Add dislike
Add to saved papers

Sustained drug release from multi-layered sequentially crosslinked electrospun gelatin nanofiber mesh.

The aim of this study is to develop electrospun gelatin nanofibers based drug delivery carrier to achieve controlled and sustainable release of hydrophobic drug (piperine) for prolonged time. To accomplish this, we devised some strategies such as sandwiching the drug loaded gelatin nanofiber mesh with another gelatin nanofiber matrix without drug (acting as diffusion barrier), sequential crosslinking and finally, a combination of both. As fabricated multilayered electrospun nanofibers mesh was first characterized in terms of degradation study, morphology, drug-polymer interactions, thermal stability followed by studying their release kinetics in different physiological pH as per the gastrointestinal tract. Our results show that with optimized diffusional barrier support and sequential crosslinking together, a zero order sustained drug release up to 48h may be achieved with a flexibility to vary the drug loading as per the therapeutic requirements. This work lays out the possibility of systematic design of multilayer nano-fiber mesh of a biopolymer as a drug delivery vehicle for hydrophobic drugs with a desired signature of zero order release for prolonged duration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app