Add like
Add dislike
Add to saved papers

Promoting chondrocyte cell clustering through tuning of a poly(ethylene glycol)-poly(peptide) thermosensitive hydrogel with distinctive microarchitecture.

Hydrogels are considered to be attractive cell-matrix for chondrocytes due to their similarity in properties to the natural cartilage. However, the formation of chondrocyte cell clusters in hydrogels has been mostly limited to naturally-derived or relatively fast degrading materials. In this study, a series of diblock copolymer poly(ethylene glycol)-poly(alanine) (mPEG-PA) was synthesized and investigated as injectable biomimic hydrogels for the culturing of chondrocytes. Depending on the poly(alanine) chain length, afforded hydrogels exhibited variable mechanical property and microarchitecture due to difference in secondary structure arrangement. After 21days of culture, cell clusters were observed in all hydrogels with longer PA chains and these hydrogels supported more homogenous and established clustering as well as significantly higher glycosaminoglycan and collagen deposition. Interestingly, scanning electron microscopy revealed a distinct micron range fibrillar-like microarchitecture that may be responsible for maintaining chondrocyte phenotype and matrix production. In addition, micrographs revealed the presence of collagen fibrils and an extensive extracellular matrix network. Therefore, it is reasonable to conclude that mPEG-PA hydrogels possess the desirable properties for chondrocyte cluster formation and serve as potential candidate in cartilage tissue engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app