Add like
Add dislike
Add to saved papers

Using GCaMP3 to Study Ca2+ Signaling in Nicotiana Species.

Ca2+ signaling is a central component of plant biology; however, direct analysis of in vivo Ca2+ levels is experimentally challenging. In recent years, the use of genetically encoded Ca2+ indicators has revolutionized the study of plant Ca2+ signaling, although such studies have been largely restricted to the model plant Arabidopsis. We have developed stable transgenic Nicotiana benthamiana and Nicotiana tabacum lines expressing the single-wavelength fluorescent Ca2+ indicator, GCaMP3. Ca2+ levels in these plants can be imaged in situ using fluorescence microscopy, and these plants can be used qualitatively and semi-quantitatively to evaluate Ca2+ signals in response to a broad array of abiotic or biotic stimuli, such as cold shock or pathogen-associated molecular patterns (PAMPs). Furthermore, these tools can be used in conjunction with well-established N. benthamiana techniques such as virus-induced gene silencing (VIGS) or transient heterologous expression to assay the effects of loss or gain of function on Ca2+ signaling, an approach which we validated via silencing or transient expression of the PAMP receptors FLS2 (Flagellin Sensing 2) or EFR (EF-Tu receptor), respectively. Using these techniques, along with chemical inhibitor treatments, we demonstrate how these plants can be used to elucidate the molecular components governing Ca2+ signaling in response to specific stimuli.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app