Add like
Add dislike
Add to saved papers

β-Lapachone suppresses the lung metastasis of melanoma via the MAPK signaling pathway.

β-Lapachone is a natural quinone compound from Lapacho trees, which has various pharmacological effects such as anti-bacterial, anti-fungal, anti-viral, and anti-inflammatory activities. However, the effect of β-lapachone on metastasis of melanoma cells is unclear. In this study, β-lapachone reduced cell viability of metastatic melanoma cancer cell lines B16F10 and B16BL6 through induction of apoptosis via the mitogen-activated protein kinase (MAPK) pathway. Additionally, flow cytometry results showed that β-lapachone increased DNA content in the G0/G1 phase of the cell cycle. Analysis of the mechanisms of these events indicated that β-lapachone regulated the expression of Bcl-2, Bcl-xL, and Bax, resulting in the activation of caspase-3, -8, -9, and poly-ADP-ribose polymerase (PARP). Moreover, the β-lapachone-administered group showed significantly decreased lung metastasis in the experimental mouse model. In conclusion, our study demonstrates the inhibitory effect of β-lapachone on lung metastasis of melanoma cells and provides a new insight into the role of β-lapachone as a potential antitumor agent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app