Add like
Add dislike
Add to saved papers

Rational Development of Near-Infrared Fluorophores with Large Stokes Shifts, Bright One-Photon, and Two-Photon Emissions for Bioimaging and Biosensing Applications.

Fluorophores with near-infrared emissions play a crucial role in numerous bioimaging and biosensing applications, owing to their deep penetration depths, low auto-fluorescence, and minimal tissue damages. Herein, the rational development of a new class of near-infrared fluorophores with bright one-photon and two-photon emissions at ≈740 nm, large Stokes shifts (≈80 nm), significant two-photon action absorption cross-section (≈185 GM at 820 nm), excellent water solubility, outstanding photostability, and low toxicity is reported. Their biological applications in mitochondrial labelling, deep tissue imaging, and H2 S detection in live cells and mice are also demonstrated. In addition, a rational design strategy for enlarging the Stokes shifts and enhancing two-photon emissions of these fluorophores is presented. These fluorophores will serve as a useful platform for developing novel imaging and sensing agents, and the design methodologies will inspire the molecular engineering of abundant high-performance near-infrared fluorophores.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app