JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Tissue pharmacokinetics and pharmacodynamics of AmBisome® (L-AmBis) in uninfected and infected animals and their effects on dosing regimens.

By selecting a unique combination of lipids and amphotericin B, the liposome composition for AmBisome® (L-AmBis) has been optimized resulting in a formulation that is minimally toxic, targets to fungal cell walls, and distributes into and remains for days to weeks in various host tissues at drug levels above the MIC for many fungi. Procedures have been standardized to ensure that large scale production of the drug retains the drug's low toxicity profile, favorable pharmacokinetics and antifungal efficacy. Tissue accumulation and clearance with single or multiple intravenous administration is similar in uninfected and infected animal species, with tissue accumulation being dose-dependent and the liver and spleen retaining the most drug. The efficacy in animals appears to be correlated with drug tissue levels although the amount needed in a given organ varies depending upon the type of infection. The long-term tissue retention of bioactive L-AmBis in different organs suggests that for some indications, prophylactic and intermittent drug dosing would be efficacious reducing the cost and possible toxic side-effects. In addition, preliminary preclinical studies using non-intravenous routes of delivery, such as aerosolized L-AmBis, catheter lock therapy, and intravitreal administration, suggest that alternative routes could possibly provide additional therapeutic applications for this antifungal drug.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app