Add like
Add dislike
Add to saved papers

Effect of microorganisms on reducing cadmium uptake and toxicity in rice (Oryza sativa L.).

This study analyzed the application of three microorganism inoculums, including Bacillus subtilis, Bacillus cereus, and commercial effective microorganism (EM) solution in order to determine cadmium (Cd) reduction in rice (Oryza sativa L.) and rice growth promotion. Rice was grown in Cd-contaminated soil (120 mg/kg) and selected microorganisms were inoculated. Cd concentration and rice weight were measured at 45 and 120 days of the experiment. The result showed that B. subtilis inoculation into rice can highly reduce Cd accumulation in every part of rice roots and shoots (45 days), and grains (120 days). This species can effectively absorb Cd compared to other inoculums, which might be the main mechanism to reduce Cd transportation in rice plants. Interestingly, plants that were inoculated with bacterial species individually harbored higher calcium (Ca) and magnesium (Mg) accumulation; B. subtilis-inoculated plants had the highest levels of Ca and Mg compared to other inoculated ones. Moreover, inoculating rice plants with these microorganisms could increase the dry weight of the plant and protect them from Cd stress because all the inoculums presented the ability to solubilize phosphate, produce indole-3-acetic acid (IAA), and control ethylene levels by 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. After 120 days, quantification of each inoculum by quantitative polymerase chain reaction (qPCR) confirmed the root colonization of bacterial species, with B. subtilis showing higher 16S rRNA gene copy numbers than the other species. B. subtilis was classified as a non-human pathogenic strain, reassuring the safe application of this plant growth-promoting bacterium as a crop inoculum.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app