Add like
Add dislike
Add to saved papers

Assessment of regional bone tissue perfusion in rats using fluorescent microspheres.

Bone Reports 2017 June
Disturbances in bone blood flow have been shown to have deleterious effects on bone properties yet there remain many unanswered questions about skeletal perfusion in health and disease, partially due to the complexity of measurement methodologies. The goal of this study was use fluorescent microspheres in rats to assess regional bone perfusion by adapting mouse-specific fluorescent microsphere protocol. Ten fifteen-week old Sprague Dawley rats were injected with fluorescent microspheres either via cardiac injection (n = 5) or via tail vein injection (n = 5). Femora and tibiae were harvested and processed to determine tissue fluorescence density (TFD) which is proportional to the number of spheres trapped in the tissue capillaries. Right and left total femoral TFD (2.77 ± 0.38 and 2.70 ± 0.24, respectively) and right and left tibial TFD (1.11 ± 0.26 and 1.08 ± 0.34, respectively) displayed bilateral symmetry in flow when assessed in cardiac injected animals. Partitioning of the bone perfusion into three segments along the length of the bone showed the distal femur and proximal tibia received the greatest amount of perfusion within their respective bones. Tail vein injection resulted in unacceptably low TFD levels in the tibia from 4 of the 5 animals. In conclusion this report demonstrates the viability of cardiac injection of fluorescent microspheres to assess bone tissue perfusion in rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app