Add like
Add dislike
Add to saved papers

Activity-specific metabolic rates for diving, transiting, and resting at sea can be estimated from time-activity budgets in free-ranging marine mammals.

Time and energy are the two most important currencies in animal bioenergetics. How much time animals spend engaged in different activities with specific energetic costs ultimately defines their likelihood of surviving and successfully reproducing. However, it is extremely difficult to determine the energetic costs of independent activities for free-ranging animals. In this study, we developed a new method to calculate activity-specific metabolic rates, and applied it to female fur seals. We attached biologgers (that recorded GPS locations, depth profiles, and triaxial acceleration) to 12 northern ( Callorhinus ursinus ) and 13 Antarctic fur seals ( Arctocephalus gazella ), and used a hierarchical decision tree algorithm to determine time allocation between diving, transiting, resting, and performing slow movements at the surface (grooming, etc.). We concomitantly measured the total energy expenditure using the doubly-labelled water method. We used a general least-square model to establish the relationship between time-activity budgets and the total energy spent by each individual during their foraging trip to predict activity-specific metabolic rates. Results show that both species allocated similar time to diving (~29%), transiting to and from their foraging grounds (~26-30%), and resting (~8-11%). However, Antarctic fur seals spent significantly more time grooming and moving slowly at the surface than northern fur seals (36% vs. 29%). Diving was the most expensive activity (~30 MJ/day if done non-stop for 24 hr), followed by transiting at the surface (~21 MJ/day). Interestingly, metabolic rates were similar between species while on land or while slowly moving at the surface (~13 MJ/day). Overall, the average field metabolic rate was ~20 MJ/day (for all activities combined). The method we developed to calculate activity-specific metabolic rates can be applied to terrestrial and marine species to determine the energetic costs of daily activities, as well as to predict the energetic consequences for animals forced to change their time allocations in response to environmental shifts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app