JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Nkx3.2 induces oxygen concentration-independent and lysosome-dependent degradation of HIF-1α to modulate hypoxic responses in chondrocytes.

Hypoxia-inducible factor 1-alpha (HIF-1α) is a DNA-binding transcription factor regulating hypoxic responses. It plays a key role in vascularization and angiogenesis as well as various metabolic pathways. Interestingly, during early phase endochondral ossification when HIF expression in chondrocytes is evident, developing cartilage primordia remains avascular until hypertrophic calcification commences. In this work, we uncovered a novel pathway causing oxygen concentration-independent and proteasome-independent degradation of HIF-1α protein. In this pathway, Nkx3.2, a chondrogenic factor, in conjunction with CHIP E3 ligase and p62/SQSTM1 adaptor, induces HIF-1α degradation via a macroautophagy pathway in a hypoxic environment. Consistent with these findings, Nkx3.2 was capable of suppressing HIF-dependent reporter gene activity as well as endogenous HIF target genes in in vitro cell culture. Furthermore, we observed that cartilage-specific Nkx3.2 overexpression in mice attenuates HIF-1α protein levels as well as vascularization in cartilage growth plates. Therefore, these results suggest that Nkx3.2-mediated HIF regulation may allow cartilage-specific avascularity under hypoxic conditions during endochondral skeleton development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app