Add like
Add dislike
Add to saved papers

Intravenous infusion of adipose-derived stem/stromal cells improves functional recovery of rats with spinal cord injury.

Cytotherapy 2017 July
BACKGROUND AIMS: Adipose tissue has therapeutic potential for spinal cord injury (SCI) because it contains multipotent cells known as adipose-derived stem/stromal cells (ASCs). In this study, we attempted intravenous ASC transplantation in rats with SCI to examine the effect on functional recovery.

METHODS: ASCs (2.5 × 106 ) were intravenously infused into SCI rats, after which hindlimb motor function was evaluated. Distribution of transplanted ASCs was investigated and growth factor/cytokine levels were determined.

RESULTS: Intravenous transplantation of ASCs promoted the functional recovery in SCI rats and reduced the area of spinal cord cavitation. A distribution study revealed that ASCs gradually accumulated at the site of injury, but long-term survival of these cells was not achieved. Levels of growth factors increased only slightly in the spinal cord after ASC transplantation. Unexpectedly, cytokine-induced neutrophil chemoattractant (CINC)-1 showed a transient but substantial increase in the spinal cord tissue and blood of the ASC group. CINC-1 was secreted by ASCs in vitro, and the sponge implantation assay showed that CINC-1 and ASCs induced angiogenesis. CINC-1 promoted functional recovery in SCI rats, which was similar to the ASCs. Expression of glial cell line-derived neurotrophic factor was greater in the ASC group than in the CINC-1 group, although both promoted extracellular signal-regulated kinase (ERK)1/2 phosphorylation; Akt phosphorylation was enhanced in the spinal cord after ASC transplantation.

CONCLUSIONS: Our findings indicated that intravenously transplanted ASCs gradually accumulated in the injured spinal cord, where cytokines such as CINC-1 activated ERK1/2 and Akt, leading to functional recovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app