Add like
Add dislike
Add to saved papers

Anti-inflammatory Effects of Valproic Acid in a Rat Model of Renal Ischemia/Reperfusion Injury: Alteration in Cytokine Profile.

Inflammation 2017 August
Valporic acid (VPA) has been implicated to have anti-inflammatory and anti-oxidant activities in several ischemic/reperfusion (I/R) injury models. This study intended to evaluate whether VPA could affect the inflammatory/anti-inflammatory cytokines balance and severity of renal I/R injury in rat. I/R injury was induced in two groups of animals, vehicle normal saline and VPA-treated (IP injection, 150 mg/kg) rats, by 45 min occlusion of both left and right renal arteries followed by 3, 24 and 120 h reperfusion in separate groups. After each time point, kidneys and blood samples were collected for cytokine genes (TNF-α, IL-1β, IL-10 and TGF-β) expression analysis and histological examinations in the kidney tissues. Serum creatinine levels were measured for evaluation of renal function. We observed significantly downregulated mRNA expressions for IL-1β and TNF-α in blood and tissue samples 24 and 120 h post I/R injury in VPA-treated animals compared to control groups (P < 0.0001). On the other hand, mRNA expression levels for IL-10 and TGF-β were significantly increased in the blood samples from VPA-treated animals at two time points after I/R injury (P < 0.0001) and at 120 h in tissue samples (P < 0.001). Histopathology analysis showed downgraded ischemic changes in VPA group compared to sham control. Also, decreased serum creatinine levels were observed in VPA-treated animals particularly 120 h post I/R injury (P < 0.0001) that was correlated with less pathological changes in this group. Our results indicate that VPA can attenuate pro-inflammatory responses and augment the anti-inflammatory condition in favor of faster renal recovery from ischemic changes and improved renal function after renal I/R injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app