Add like
Add dislike
Add to saved papers

A framework for parallel and distributed training of neural networks.

The aim of this paper is to develop a general framework for training neural networks (NNs) in a distributed environment, where training data is partitioned over a set of agents that communicate with each other through a sparse, possibly time-varying, connectivity pattern. In such distributed scenario, the training problem can be formulated as the (regularized) optimization of a non-convex social cost function, given by the sum of local (non-convex) costs, where each agent contributes with a single error term defined with respect to its local dataset. To devise a flexible and efficient solution, we customize a recently proposed framework for non-convex optimization over networks, which hinges on a (primal) convexification-decomposition technique to handle non-convexity, and a dynamic consensus procedure to diffuse information among the agents. Several typical choices for the training criterion (e.g., squared loss, cross entropy, etc.) and regularization (e.g., ℓ2 norm, sparsity inducing penalties, etc.) are included in the framework and explored along the paper. Convergence to a stationary solution of the social non-convex problem is guaranteed under mild assumptions. Additionally, we show a principled way allowing each agent to exploit a possible multi-core architecture (e.g., a local cloud) in order to parallelize its local optimization step, resulting in strategies that are both distributed (across the agents) and parallel (inside each agent) in nature. A comprehensive set of experimental results validate the proposed approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app