Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Cue combination in human spatial navigation.

This project investigated the ways in which visual cues and bodily cues from self-motion are combined in spatial navigation. Participants completed a homing task in an immersive virtual environment. In Experiments 1A and 1B, the reliability of visual cues and self-motion cues was manipulated independently and within-participants. Results showed that participants weighted visual cues and self-motion cues based on their relative reliability and integrated these two cue types optimally or near-optimally according to Bayesian principles under most conditions. In Experiment 2, the stability of visual cues was manipulated across trials. Results indicated that cue instability affected cue weights indirectly by influencing cue reliability. Experiment 3 was designed to mislead participants about cue reliability by providing distorted feedback on the accuracy of their performance. Participants received feedback that their performance with visual cues was better and that their performance with self-motion cues was worse than it actually was or received the inverse feedback. Positive feedback on the accuracy of performance with a given cue improved the relative precision of performance with that cue. Bayesian principles still held for the most part. Experiment 4 examined the relations among the variability of performance, rated confidence in performance, cue weights, and spatial abilities. Participants took part in the homing task over two days and rated confidence in their performance after every trial. Cue relative confidence and cue relative reliability had unique contributions to observed cue weights. The variability of performance was less stable than rated confidence over time. Participants with higher mental rotation scores performed relatively better with self-motion cues than visual cues. Across all four experiments, consistent correlations were found between observed weights assigned to cues and relative reliability of cues, demonstrating that the cue-weighting process followed Bayesian principles. Results also pointed to the important role of subjective evaluation of performance in the cue-weighting process and led to a new conceptualization of cue reliability in human spatial navigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app