Add like
Add dislike
Add to saved papers

The ATP binding cassette transporter, VmTPT2/VmABCG1, is involved in export of the monoterpenoid indole alkaloid, vincamine in Vinca minor leaves.

Phytochemistry 2017 August
Vinca minor is a herbaceous plant from the Apocynaceae family known to produce over 50 monoterpene indole alkaloids (MIAs). These include several biologically active MIAs that have a range of pharmaceutical activities. The present study shows that the MIAs, vincamine, akuammicine, minovincinine, lochnericine and vincadifformine tend to be secreted on V. minor leaf surfaces. A secretion mechanism of MIAs, previously described for Catharanthus roseus, appears to be mediated by a member (CrTPT2) of the pleiotropic drug resistance ABC transporter subfamily. The molecular cloning of an MIA transporter (VmTPT2/VmABCG1) that is predominantly expressed in V. minor leaves was functionally characterized in yeast and established it as an MIA efflux transporter. The similar function of VmTPT2/VmABCG1 to CrTPT2 increases the likelihood that this MIA transporter family may have co-evolved within members of Apocynaceae family to secrete selected MIAs and to regulate leaf MIA surface chemistry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app